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Abstract This article proposes a new fuzzy time series

(NFTS) model that can interpolate historical data to fore-

cast effectively for the future. In this model, after nor-

malizing original data, we establish the automatic

algorithm to determine the suitable number of clusters and

to find the fuzzy relationships of each element in series to

the established clusters. A principle for forecasting is also

proposed from these established fuzzy relationships. The

convergence of the proposed algorithm is proven by theory

and shown by the numerical examples. The calculation of

the proposed model can be performed conveniently and

efficiently by a complete Matlab procedure. Comparing

with many existing models from a lot of well-known data

sets with various scales and characteristics, NFTS model

has shown prominent advantages.

Keywords Algorithm � Cluster � Forecast � Fuzzy time

series � Interpolate

1 Introduction

Forecasting is the process of making predictions based on

historical data, knowledge and experience of the related

problems. Because of its important role in many fields,

forecasting has been paying much attention by scientists.

Although there are many discussions in the literature, it has

not yet been completely solved. With time series, a com-

mon data type in reality, two major models used for fore-

casting are regression and time series. When constructing a

regression model, we must constrain on the data conditions

that are difficult to satisfy in reality. Therefore, this model

has a number of limitations in many applications. Time

series model was evaluated to be more advantageous in

reality, so it is used very commonly today [10, 21, 27, 28].

Many researchers have used the time series models such as

autoregressive, moving average and autoregressive inte-

grated moving average (ARIMA) for applications in eco-

nomics, environment, hydrology. However, when building

these models, we also have to accept some conditions

where the actual data are not satisfactory. As a result, they

have shown disadvantage in many cases. Although many

authors in [2, 3, 16, 22, 35] have tried to improve original

model, they still have many drawbacks in forecasting for

the real problems. This model is evaluated better than

others based on the specific data only that not for all of the

cases. The traditional time series models cannot deal with

forecasting problems in which the historical data are pre-

sented by linguistic values. Fuzzy time series (FTS) model

has been proposed to solve this drawback. FTS model is

developed in two main directions. The first one is to build

the FTS model from the original data and directly use this

model to forecast. Abbasov and Manedova [1] had

important contributions to this direction. The second one is

to interpolate data in order get the relation between ele-

ments in series and then to use this fuzzy data to forecast

by the known forecasting models. This research has been of

great interest by many statisticians. Song and Chissom [28]

were the pioneer in this direction with data on enrollment

of the University of Alabama (EnrollmentUA). Quang [25]

used the triangular fuzzy relation for performing. Ming

et al. [9, 23] improved the model of Qiang and Brad [25]
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when taking notice of fuzzy level. Huarng et al. [18, 24]

presented a heuristic model for FTS using heuristic

knowledge to improve the forecast for EnrollmentUA.

Based on neural network, the model of Alpaslan et al. [5]

gave the interesting results in some cases. From the fuzzy

model in accordance with different linguistic levels, many

scientists such as [17, 21, 27, 31] have proposed the new

models.

A FTS model usually consists of three stages: (i) deter-

mining universal set, dividing intervals for universal set

and finding the number of elements for each interval, (ii)

building the fuzzy relationships, and (iii) defuzzification

for data. For (i), many authors used the values min and max

of original data to divide the interval for a universal set

[9, 10]. In addition, Huarng et al. [18, 19] proposed two

new techniques for finding intervals based on the mean of

the distributions. Abbasov and Manedova [1] have built the

universal set based on the change of data between con-

secutive periods of time or their percentage change.

Determining the number of fuzzy sets and elements in each

fuzzy set is very important for establishing a model. Many

authors divided the number of fuzzy set based on testing

for many cases to find the suitable number for each case.

This means that it is not a common rule for all. The number

of fuzzy sets and their elements was also determined by the

k-mean [36] and the genetic algorithm [14]. According to

our knowledge, although there are a lot of discussions

about this problem, the optimal choice has not been still

found yet so far. For (ii), several important studies have

been performed. For instance, Song and Chissom [28] used

matrix operations, and Chen [10] took the fuzzy logic

relations. Moreover, many authors in [4, 11–13, 19] used

artificial neural networks to determine fuzzy relations. In

addition, the fuzzy relationship based on the triangle and

trapezoid fuzzy number was also considered in [17]. For

(iii), many studies had used either the centroid method

[10, 18, 19] or the adaptive expectation method [3, 9] to

perform.

This article contributes to three stages: (i), (ii), and (iii)

for FTS model. For (i), after normalizing data, we proposed

an automatic algorithm to determine the suitable numbers

of fuzzy set for each series. The number of fuzzy sets

depends the similar levels of elements in series. This

method is more suitable than existing ones that were pre-

sented as linguistic values with levels are constant. (It is

usually five or seven in applications.) This algorithm also

gives specific clusters of series. For (ii), we also build an

automatic algorithm to find the fuzzy relationships between

each element in series with the established clusters from

(i). For (iii), based on the principle for normalizing series

and the fuzzy relations found from (ii), a new defuzzifi-

cation method is also proposed. Incorporating all these

improvements, we have a new fuzzy time series (NFTS)

model better than the existing ones through many well-

known data sets. The convergence of the proposed algo-

rithms is considered by theory and illustrated by the

numerical examples. We also establish the Matlab proce-

dure for the proposed model. This procedure can perform

effectively the NFTS model for numerical examples. In

addition, we also apply the proposed model to forecast

flood peak for the main river in Vietnam.

The remainder of this article is organized as follows.

Section 2 reviews some basic concepts of FTS model,

proposes a new FTS model and considers the convergence

of the proposed model. Section 3 presents numerical

examples to illustrate for the present theories. This section

also compares the proposed model with some existing

models. A real application that it is very urgent in Vietnam

is present in Sect. 4. The final section is destined for the

conclusion.

2 Some Definitions and the Proposed Algorithm

2.1 Definitions

Definition 1 Let U be universe of discourse, U ¼
u2; u2; . . .; unf g: A fuzzy set A of U is defined as follows:

A ¼ flAðu1Þ=u1; lAðu2Þ=u2; . . .; lAðunÞ=ung;

where lAðuiÞ is the membership function of A, lAðuiÞ :
U ! ½0; 1�; lAðuiÞ indicates the grade of membership of ui
in lAðuiÞ 2 ½0; 1�; 1� i� n:

Definition 2 Let XðtÞ; ðt ¼ 1; 2; . . .Þ, a subset of real

numbers be the universe of discourse by which the fuzzy

sets fiðtÞ are defined. If F(t) is a collection of f1ðtÞ; f2ðtÞ; . . .;
then, F(t) is called a FTS defined on X(t) .

Definition 3 Given a chain of historical data Xif g and

predictive value fX
_

ig; i ¼ 1; 2; . . .; n, respectively, then we

have the popular parameters to evaluate built FTS models

as follows:

Mean squared error:

MSE ¼ 1

n

Xn

i¼1

X̂i � Xi

� �2
: ð1Þ

Mean absolute error:

MAE ¼ 1

n

Xn

i¼1

X̂i � Xi

�� ��: ð2Þ

Mean absolute percentage error:

MAPE ¼ 1

n

Xn

i¼1

X̂i � Xi

�� ��
Xi

� 100
 !

: ð3Þ

T. Vovan, N. Ledai: A New Fuzzy Time Series Model Based on Cluster Analysis Problem 853

123

Author's personal copy



Symmetric mean absolute percentage error:

SMAPE ¼
Xn

i¼1

X̂i � Xi

�� ��

ðXi þ X̂iÞ=2
100

 !
: ð4Þ

Mean absolute scaled errors:

MASE ¼
Pn

i¼1 jX̂i � Xij
n

n�1

Pn
i¼2 jXi � Xi�1j

: ð5Þ

2.2 The Proposed Model

Assume that the data set Xi corresponds to time ti; i ¼
1; 2; . . .; n: A new fuzzy time series (NFTS) model with 5

steps is proposed as follows:

Step 1. Standardizing data on scale 10, Yi ¼
10Xi=max Xif g; i ¼ 1; 2; . . .; n: Then, we have

the universal set U ¼ Yi; i ¼ 1; 2; . . .; nf g:
Step 2. Determining the suitable number of clusters for

the universal set U. This problem is performed by

the SNC algorithm (suitable number of clusters).

This algorithm has 3 steps as follows:

Step 2.1. Initialize t ¼ 0 and

Zð0Þ ¼ fzð0Þ1 ; z
ð0Þ
2 ; . . .; z

ð0Þ
n g ¼ ðY1; Y2; . . .; Yng:

Step 2.2. Every fuzzy data point is updated

according to

z
ðtþ1Þ
i ¼

Pn
i0¼1 f ðz

ðtÞ
i ; z

ðtÞ
i0 Þz

ðtÞ
i0Pn

i0¼1 f ðz
ðtÞ
i ; z

ðtÞ
i0 Þ

; ð6Þ

where f(.) is the truncated Gauss kernel:

f ðzðtÞi ; z
ðtÞ
i0 Þ ¼

expð�d=kÞ if dðzðtÞi ; z
ðtÞ
i0 Þ � ds;

0 if dðzðtÞi ; z
ðtÞ
i0 Þ[ dS;

(

ð7Þ

with k is constant, dðzðtÞi ; z
ðtÞ
i0 Þ is measure for

similarity between z
ðtÞ
i and z

ðtÞ
i0 and ds is the

mean of measures of all pair elements:

dS ¼
2

nðn� 1Þ
X

i\i0
dðzðtÞi ; z

ðtÞ
i0 Þ; ð8Þ

d(.) is distance between the prototype elements

of two clusters. The larger d is, the smaller the

value of the truncated Gauss kernel is. k
measures variance of the truncated Gauss

kernel. The larger k is, the larger the standard

deviation of each established clusters is taken.

Then, the number of clusters for the universal

set is otherwise. When k ! 0, the data have

n intervals and when k ! 1; the data have

only one interval. In studying about cluster

analysis problem, Chen and Hung [8] have

taken k ¼ 5. We see that this value is not

suitable for the considered series. To take the

suitable value of k for all series, Step 1 of the

proposed algorithm has standardized data on

scale 10. Performing with many time series,

we choose k ¼ 16 in numerical examples.

Step 2.3. Repeat Step 2.2 until the following

condition is satisfied:

maxifdðzðtÞi ; z
ðtþ1Þ
i Þg\e:

In the SNC algorithm, after an iteration has

finished, each element in data set will con-

verge to the representative element

z
ðtÞ
i ; i ¼ 1; 2; . . .; c. When the algorithm stops,

we have sequences of c representative ele-

ments, and c is the number of clusters divided

for the universal set.

Step 3. Determining the elements in each cluster wi and

the fuzzy relation lij from each element Yi to the

cluster wj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; c: This

problem is performed by the DFR algorithm

(determining fuzzy relation) as follows:

Step 3.1. Divide U into c clusters

w1;w2; . . .;wc randomly. Establish the initial

partition matrix U 0ð Þ ¼ lij
� �

k�n
; with lij ¼ 1 if

the jth element belongs to the wi and lij ¼ 0

for otherwise.

Step 3.2. Find the representative element vi for

each cluster by (9).

vi ¼
Xn

j

lij
2yj

 !
=
Xn

j

lij
2

 !
; ð9Þ

where 1� i� c; lij is the probability of the jth

element assigned to wi:

Step 3.3. Update the new partition matrix U 1ð Þ

by Formula (10):

lij
1ð Þ ¼

1
Pc

l¼1 dij=dlj
� �2 if dij [ 0;

0 if dij � 0;

8
><

>:

ð10Þ

where dij is the distance from yj to vi and dlj is

the distance from yl to vi.
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Step 3.4. Compute the

S ¼ maxij l 1ð Þ
ij � l 0ð Þ

ij

���
���

� �
:

Repeat Step 3.2, Step 3.3 and Step 3.4 until

S\e:In this algorithm, the Euclidian distance is

also used. The end of this algorithm is a matrix of

size (c� n). In this matrix, the sum of each

column always equals 1 ð
P

c
j¼1lij ¼ 1Þ. If

maxflijg ¼ lim; 1�m� c then the element

yi; 1� i� n is assigned to wm:

Step 4. Calculating the center mi of each cluster, i ¼
1; 2; . . .; c and forecast Yi according to the

following rule:

Yi ¼
Xc

j¼1

lijcj; i ¼ 1; 2; . . .; n: ð11Þ

Step 5. Forecasting Xi from the results of Yi by (12):

Xi ¼ Yi �maxfXig=10: ð12Þ

The proposed algorithm is illustrated in Fig. 1.

We have established a completely Matlab procedure to

perform the proposed (IFTS) model. The calculation of the

IFTS model can be performed conveniently and efficiently

by this procedure. It is applied for numerical examples in

Sects. 2.3 and 3.

2.3 The Convergence of the Proposed Algorithm

The convergence of the proposed algorithm is shown by

the SNC algorithm (Step 2) and the DFR algorithm (Step

3). The DFR algorithm is improved from the fuzzy c-means

clustering of time series data that its convergence was

presented by [8, 26]. Therefore, to evaluate the conver-

gence of the proposed algorithm, we consider the conver-

gence of the SNC algorithm. It is presented by Theorem 1.

Theorem 1 If the function f(u, v) in (7) satisfies:

(i) f(u, v) depends only on d(u, v), the distance from

u to v.

(ii) 0� f ðu; vÞ� 1 and f ðu; vÞ ¼ 1 only when u ¼ v;

(iii) f(u, v) is decreasing with respect to d(u, v) , then

there exists t so that z
ðtþ1Þ
i satisfies:

maxifdðzðtÞi ; z
ðtþ1Þ
i Þg\e:

Proof Let C
ðtÞ
1 be the convex hull of z tð Þ ¼

z
tð Þ
1 ; z

tð Þ
2 ; . . .; z tð Þ

n

n o
; we have z

ðtþ1Þ
j determined by (6) is a

Fig. 1 Diagram for the proposed algorithm
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weighted average of z
ðtÞ
j ; j ¼ 1; 2; . . .; n: Therefore, z

ðtþ1Þ
j 2

C
ðtÞ
1 ; that means:

C
ð0Þ
1 � C

ð1Þ
1 � � � � � C

ðtÞ
1 � � �

Let C1 be the limit of C
ðtÞ
1 ;C1 ¼ limt!1 C

ðtÞ
1 : For each

vertex u1;i of C1; we prove that there exists at least one j,

such that

lim
t!1

z
ðtÞ
j ¼ u1;i: ð13Þ

Since 8t, uðtÞ1;i ¼ z
ðtÞ
k for at least one k, there exists j, such

that for infinite many t, z
ðtÞ
j ¼ u

ðtÞ
1;i: Therefore, there exists

tn ! 1, such that z
ðtnÞ
j ¼ u

ðtnÞ
1;i which leads to

limn!1 z
ðtnÞ
j ¼ u1;i: If z

ðtnÞ
j ¼ u1;i except for any finite t,

Eq. (13) is established. Otherwise, there exists j0 6¼ j and

sn ! 1, such that z
ðsnÞ
j0 ¼ u

ðsnÞ
1;i : Without loss of generosity,

assume that u
ðtÞ
1;i ¼ z

ðtÞ
j or z

ðtÞ
j0 ; 8t[ T : From Eq. (10), if

z
ðsÞ
j ¼ z

ðsÞ
j0 for some s, z

ðtÞ
j ¼ z

ðtÞ
j0 ; 8t[ s: Therefore, for any

s[ 0 there exists t[ s, such that u
ðtÞ
1;i ¼ z

ðtÞ
j and u

ðtþ1Þ
1;i ¼

z
ðtþ1Þ
j0 : Furthermore, we can choose s large enough, so that

C
ðsÞ
1 is close enough to C1. Precisely, for any e, there exists

s, such that

u
ðsÞ
1;k � u1;k

���
���\e; 8k:

From the definition of f in (7), f is smaller than 1 unless the

subjects are the same, which means each subject is most

similar to itself. Since z
ðtþ1Þ
j0 is the weighted average of

z
ðtÞ
k ; z

ðtÞ
j0 cannot be too far from u1;i, otherwise, z

ðtþ1Þ
j0 will not

be at u
ðtþ1Þ
1;k , which is not inside the C1. u

ðtÞ
1;k is also not

inside the C1, and is within e to u1;i: Therefore, X
ðtÞ
j0 has to

be within e to u1;i that z
ðtþ1Þ
j0 can be at u

ðtþ1Þ
1;k : Since e can be

chosen arbitrary small, now we let e small enough that all

the projections, except k ¼ j; j0, from z
ðtÞ
k to z

ðtÞ
j0 z

ðtÞ
j

			!
fall into

the negative side. This means that all other subjects are

closer to z
ðtÞ
j0 than z

ðtÞ
j , and they have effects to pull both

toward the convex hull. Since z
ðtÞ
j0 is closer to other subjects,

the values of f s are larger. Recall that

z
tþ1ð Þ
i ¼

Pn
j¼1 f z

tð Þ
i ; z

tð Þ
j

� �
� z tð Þ

j

Pn
j¼1 f z

tð Þ
i ; z

tð Þ
j

� � ;

f ðzðtÞj ; z
ðtÞ
k Þ\f ðzðtÞj0 ; z

ðtÞ
k Þ; for k ¼ j; j0: Since f ðzðtÞj0 ; z

ðtÞ
j Þ\1,

the effect from itself is larger than that from the other

subject. This means that z
ðtþ1Þ
j0 is closer to z

ðtÞ
j0 and that z

ðtþ1Þ
j0

is closer to z
ðtÞ
j if ignoring the effects from other subjects.

Combining the fact that the effects from other subjects to

pull z
ðtþ1Þ
j0 toward the convex hull are larger, z

ðtþ1Þ
j0 cannot

replace z
ðtþ1Þ
j as a new vertex. This contradicts to the

assumption. Therefore, u
ðtÞ
1;i ¼ z

ðtÞ
j for some j and for all t

large enough. Then,

lim
t!1

z
ðtÞ
j ¼ lim

t!1
u
ðtÞ
1;i ¼ u1;i:

LetC2 be the limit ofC
ðtÞ
2 ;C2 ¼ limt!1 C

ðtÞ
2 ; apply similar as

C
ðtÞ
1 , we have at least one subject convergence to each vertex

of C2: Then, we can run similar steps again for C3;C4; . . .

until all subjects convergence. It can be tested that the pro-

posed function f(u, v) in (7) satisfies: f(u, v) depends only on

dðu; vÞ; 0� f ðu; vÞ� 1, f ðu; vÞ ¼ 1 only when u ¼ v; and

f(u, v) is decreasing with respect to d(u, v). Therefore, after

the algorithm finishes, we have m elements z
ðtÞ
i ; i ¼

1; 2; . . .;m so that maxifdðzðtÞi ; z
ðtþ1Þ
i Þg\e: h

In sum, the proposed algorithm converges for all time

series. It means that this algorithm is controlled by the

finite time. We know that the finite time control is more

meaningful than infinite time control for nonlinear systems

[32]. In our knowledge, this problem is not almost con-

sidered in the researches about the FTS models. Consid-

ering about time control is necessary to evaluate the

effectivity of a FTS model, so we will further research

about it in the next time.

3 Numerical Examples

3.1 Illustration for the Proposed Algorithm

In this section, we use the EnrollmentAU data presented in

many studies such as [9, 10] to illustrate the steps of the

proposed algorithm. This data set is often used to compare

the effects of FTS models.

Step 1. From the given data set fXig; i ¼ 1; 2; . . .; 22;

standardizing the data on the scale 10, we obtain the values

Yi in Table 1.

Step 2. Apply the SNC algorithm with different values

of k;, and we always obtain the convergence. Some cases

for convergence of the SNC algorithm are shown in Fig. 2.

As presented in Step 2 of the proposed algorithm, per-

forming with many time series, we choose k ¼ 16 for all

numerical examples in this article. Then, after 18 iterations,
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the algorithm will converge to the following values: 7.0112

7.0113 7.0113 7.9804 7.9804 7.9804 7.9804 7.9804 8.6780

8.6780 8.6780 7.9804 7.9804 7.9804 7.9804 7.9804 8.6780

9.4139 9.8920 9.8920 9.8920 9.8920.

The result gives six representative elements, so we

divide this series into 6 clusters.

Step 3. Using the DFR algorithm with 6 clusters, we

have the specific clusters:

Table 1 EnrollmentAU data and its standardized data

Year Xi Yi Year Xi Yi

1971 13,055 6.751 1982 15,433 7.981

1972 13,563 7.014 1983 15,497 8.014

1973 13,867 7.171 1984 15,145 7.832

1974 14,696 7.600 1985 15,163 7.841

1975 15,460 7.995 1986 15,984 8.266

1976 15,311 7.918 1987 16,859 8.719

1977 15,603 8.069 1988 18,150 9.386

1978 15,861 8.202 1989 18,970 9.810

1979 16,807 8.692 1990 19,328 9.995

1980 16,919 8.750 1991 19,337 10.00

1981 16,388 8.475 1992 18,876 9.762

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

6

6.5

7

7.5

8

8.5

9

9.5

10

V
al
ue

s

(a) λ = 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

6

6.5

7

7.5

8

8.5

9

9.5

10

V
a
lu
e
s

(b) λ = 20

0 1 2 3 4 5 6 7 8 9 10

Iteration

6

6.5

7

7.5

8

8.5

9

9.5

10

V
al
ue

s

(c) λ = 24

Fig. 2 The convergence of the SNC for some cases: a k ¼ 16, b k ¼ 20, and c k ¼ 24
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w1 ¼ Y1f g; w2 ¼ Y2; Y3f gw3

¼ Y4; Y5; Y6; Y7; Y8; Y12; Y13; Y14; Y15; Y16g:
w4 ¼fY9; Y10; Y11; Y17g; w5 ¼ Y18f g;

w6 ¼ Y19; Y20; Y21; Y22f g:

Calculating the center of each cluster, we obtain the results:

6.7510, 7.0925, 7.9718, 8.6590, 9.3860 and 9.8918.

The DFR algorithm also gives the relationships lij from
each element yi to the cluster wj; i ¼ 1; 2; . . .; 22; j ¼
1; 2; . . .; 6 by the partition matrix:

lij
� �

6�22
¼

0:9955 0:2446 0:0023 . . . 0:0008 0:0018

0:0037 0:7310 0:9968 . . . 0:0012 0:0024

0:0004 0:0151 0:0006 . . . 0:0024 0:0051

0:0002 0:0052 0:0002 . . . 0:0054 0:0132

0:0001 0:0024 0:0001 . . . 0:0262 0:1156

0:0001 0:0017 0:0000 . . . 0:9638 0:8619:

2
666666664

3
777777775

These probabilities are shown in Fig. 3.

Step 4. Forecast for Yi according to (11), we obtain Y
_

i in

Table 2.

Fig. 3 The graph shows the relation between each element with 6 clusters

Table 2 The forecasted values for the EnrollmentAU data

Year Y
_

i X
_

i
Year Y

_

i X
_

i

1971 6.7535 13,059 1982 7.9718 15,415

1972 7.0407 13,615 1983 7.9733 15,418

1973 7.0928 13,715 1984 7.9542 15,381

1974 7.6540 14,801 1985 7.9579 15,388

1975 7.9721 15,416 1986 8.2170 15,889

1976 7.9717 15,415 1987 8.6595 16,745

1977 7.9853 15,441 1988 9.3860 18,150

1978 8.1069 15,676 1989 9.8536 19,054

1979 8.6588 16,743 1990 9.8635 19,073

1980 8.6630 16,752 1991 9.8608 19,068

1981 8.5829 16,597 1992 9.7949 18,940

Fig. 4 The graph of actual and forecasted values of the EnrollmentAU data
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Step 5. From the results of Y
_

i according to (12), the

forecasted values for Xi are X
_

i given in Table 2 and shown

in Fig. 4. We also obtain the parameters MSE ¼ 21,292,

MAE ¼ 121.96 and MAPE ¼ 0.75.

Figure 4 shows that the actual and forecasted values are

almost identical.

3.2 Comparing Some Benchmark Data Sets

In this section, we use many series with different charac-

teristics and numbers to compare the results of the pro-

posed model with those of the models in [1] (AM), [21] (L-

C), [18] (Hua), [6] (B-R), [27] (Si), [33] (Y-H), [17] (Gh),

[10] (Chen), [7] (C-K), [9] (C-H), [20] (Kha), [34] (Yus),

[15] (Egr), and Tai [30]. These are typical models, in which

there are current works. The considered data sets are

EnrollmentUA [10], Taifex (Taiwan Stock Exchange) [7],

Table 3 The parameters of the

proposed algorithm and others
Data Criteria L-C Hua AM Si Gh

EnrollmentUA MAE 296.15 299.15 479.57 254.16 298.68

MAPE 2.69 2.45 2.87 1.53 1.82

MSE 255,227 226,611 342,326 95,305 186,421

Taifex MAE 38.27 96.71 89.30 46.01 71.10

MAPE 0.89 1.39 1.32 0.70 1.03

MSE 918.16 14,391 14,136 2968 937

Outpatient MAE 76.23 96 181 119.03 56.18

MAPE 11.54 13.75 22.50 2.12 1.98

MSE 12,703 14,706 42,767 17,995.74 16,754.35

Foodgrain MAE 47.76 58.64 89.60 8.69 8.17

MAPE 6.47 4.53 5.81 5.43 4.98

MSE 175.43 4772 10,672 104.25 123.45

Data Criteria C-H Y-H Tai C-K B-R

EnrollmentUA MAE 293.45 216.50 168.84 314.34 285.28

MAPE 1.76 2.15 1.02 2.17 1.65

MSE 138,366.80 47,231.03 28,525.00 41,235 174,390.90

Taifex MAE 11.36 21.32 11.40 25.71 9.27

MAPE 0.17 1.42 0.17 1.03 0.16

MSE 230.76 22,801 527.81 7679.0 94.65

Outpatient MAE 107.40 138.38 159.80 167.15 249.17

MAPE 1.89 2.17 24.45 2.74 3.06

MSE 16,255.32 156.39 37,551.87 3890.76 165,755.00

Foodgrain MAE 107.71 67.23 60.35 7.45 7.95

MAPE 7.01 5.96 4.55 5.21 6.62

MSE 183.56 2987.15 6460 2345.21 124.07

Data Criteria Chen Yus Egr Kha Proposed

EnrollmentUA MAE 502.38 182.51 192.15 211.12 121.96

MAPE 3.08 1.62 1.83 2.12 0.75

MSE 413,980.98 31,752 34,280 31,021 21,292

Taifex MAE 45.24 19.32 21.15 17.18 7.30

MAPE 0.66 0.78 0.98 0.85 0.11

MSE 4225.29 824.00 1012 921.15 85.68

Outpatient MAE 325.96 96.34 86.28 49.98 43.74

MAPE 5.82 1.34 1.45 1.09 0.76

MSE 181,554.56 3421.24 3017.36 2908.48 2578.60

Foodgrain MAE 16.18 109.15 6.98 5.98 4.99

MAPE 10.13 7.57 5.09 4.87 3.93

MSE 440.26 256.57 123.08 98.28 60.10
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Outpatient [6] and Foodgrain [17]. These well-known data

are widely studied in the context of FTS models. If there is

a new method that relates to FTS, then these data sets are

often used to compare the performances between the new

method and existing methods. In each data set, we will

perform for two cases:

(i) All of the data are used to build the models and

evaluate them according to the parameters MAE,

MAPE and MSE.

(ii) Each data set is divided into two parts: Eighty

percent of them are used as the training set to build

the models, and about twenty percent of the

remaining data is used as the validation set. For

the training set, the ARIMA and Abbasov–

Manedova (AM) models with original data (ARI-

MAR and AMR), ARIMA and AM models with

fuzzy data of the proposed method (ARIMAP,

AMP) are established. Using the established mod-

els from training set to forecast for the validation

set.

• For (i): The results are presented in Table 3.

Table 3 shows that the MAE, MAPE, and MSE of the

proposed model are always smaller than the compared

existing models for all data sets. This finding shows the

stability and the advantages of the proposed model.

• For (ii):

– With each training set, we perform the models

AMR, AMP, ARIMAR and ARIMAP. Their results

are given in Table 4.

– Using the established models from training set

(AMR, AMP, ARIMAR and ARIMAP) to forecast

for the test set, we have Table 5.

Table 4 MAE, MAPE and

MSE of four training sets
Model Error EnrollmentAU Taifex Outpatient Foodgrain

AMR MAE 482.28 90.41 463.12 9.46

MAPE 3.04 1.31 7.86 6.68

MSE 329,266.60 12,389.36 293,362.08 135.47

AMP MAE 442.07 71.95 459.08 9.54

MAPE 2.80 1.04 7.84 6.70

MSE 391,803.40 9676.98 289,234.21 190.94

ARIMAR MAE 423.21 39.20 385.49 7.06

MAPE 2.68 0.57 6.42 5.31

MSE 283,110.36 3373.71 218,896.50 70.67

ARIMAP MAE 388.51 39.06 373.84 6.11

MAPE 2.49 0.57 6.21 4.29

MSE 226,972.97 3181.28 233,783.75 52.37

Table 5 MAE, MAPE and MSE of four test sets

Data Model MAE MAPE MSE

EnrollmentUA ARIMAR 742.27 3.93 901,655.37

AM 1785.28 9.39 3,326,909.30

AMP 1089.69 5.74 1,376,307.00

ARIMAP 739.16 3.92 731,600.93

Taifex ARIMAR 79.61 1.17 7740.10

AM 79.00 1.16 7117.50

AMP 64.04 0.94 4581.28

ARIMAP 67.85 1.00 5882.97

Outpatient ARIMAR 335.57 7.09 195,066.15

AM 930.75 19.52 1,303,655.09

AMP 790.76 16.40 823,289.30

ARIMAP 232.14 3.74 68,996.02

Foodgrain ARIMAR 12.91 6.33 281.57

AM 15.77 7.91 404.69

AMP 13.16 6.64 299.98

ARIMAP 12.28 5.97 251.23

Table 6 MAPE, MASE and E(SMAPE) for the M3-competition data

Methods MAPE MASE E(SMAPE)

ForecastPro 18.00 1.47 13.19

ForecastX 17.35 1.42 13.49

BJ automatic 19.13 0.54 14.01

Autobox1 18.23 1.51 14.41

Autobox2 20.36 1.69 15.23

Autobox3 19.31 1.57 15.33

ETS 17.38 1.43 13.13

AutoARIMA 18.92 1.46 13.59

Hybrid 17.59 1.40 12.82

Proposed model 6.77 1.00 10.76
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Tables 4 and 5 show that the proposed model has the

best result in both interpolating and forecasting for all

considered data sets. With a lot of considered models, this

comparison is very meaningful to evaluate the advantages

of the NFTS model.

3.3 Comparing M3-Competition Data

To increase convincement about the effectivity of the

proposed model, we use the M3-competition data, which is

a well-known benchmark data pool in the forecasting

literature to perform. This data set was organized by Spyros

and Michle [29]. Entrants had to forecast 3003 time series

and the results were compared to a test set that was with-

held from the participants. The 3003 series of the M3-

Competition were selected on a quota basis to include

various types of time series data (micro, industry, macro,

etc.) and different time intervals between successive

observations (yearly, quarterly, etc.). In order to ensure that

enough data were available to develop an adequate fore-

casting model, it was decided to have a minimum number

of observations for each type of data. This minimum was

set as 14 observations for yearly series (the median length

of the 645 year series is 19 observations), 16 for quarterly

(the median length of the 756 quarterly series is 44

observations), 48 for a monthly (the median length of the

1428 monthly series is 115 observations) and 60 for

another series (the median length of the 174 other series is

63 observations). All the data (both training and test sets)

and the forecasts of the original participants are publicly

available in the Mcomp package for R software. The

considered important models are ForecastPro, ForecastX,

BJ automatic, Autobox1, Autobox2, Autobox3, Hybrid,

ETS and AutoARIMA (see https://robjhyndman.com/

m3comparisons.R). Using the proposed model and the

above existing models, we perform for each series of the

M3-forecasting competition data. In the proposed model,

Table 7 Flood peak of Tien

River from 1990 to 2017
Year Flood peak Year Flood peak Year Flood peak Year Flood peak

1990 418 1997 418 2004 440 2011 486

1991 463 1998 281 2005 436 2012 432

1992 343 1999 420 2006 417 2013 435

1993 344 2000 506 2007 408 2014 396

1994 453 2001 479 2008 377 2015 251

1995 430 2002 482 2009 412 2016 307

1996 486 2003 406 2010 320 2017 343

Table 8 The forecasted results

for the flood peak of training set
Year Actual NFTS Error (%) Year Actual NFTS Error (%)

1990 418 420.90 0.69 2001 479 483.01 0.83

1991 463 466.25 0.70 2002 482 483.25 0.26

1992 343 343.50 0.15 2003 406 417.65 2.86

1993 344 343.50 0.15 2004 440 457.98 3.86

1994 453 456.27 0.72 2005 436 450.78 3.39

1995 430 443.61 0.03 2006 417 420.65 0.88

1996 486 483.39 0.53 2007 408 419.22 0.87

1997 418 420.90 0.69 2008 377 377.00 0.00

1998 281 281.00 0.00 2009 412 420.47 2.05

1999 420 422.01 0.48 2010 320 320.00 0.00

2000 506 505.98 0.03 2011 486 483.39 0.53

MAE ¼ 5.10; MAPE ¼ 1.19; MSE ¼ 59.99

Table 9 Comparing the models of the test set for the flood peak

Year Actual ARIMAR ARIMAP AM AMP

2012 432 520.51 463.69 500.00 494.63

2013 435 373.01 399.83 514.04 505.88

2014 396 423.48 440.51 528.05 517.12

2015 251 423.48 441.60 541.97 528.36

2016 307 423.48 431.10 556.05 539.60

2017 343 423.48 420.59 569.78 550.85

MAE 91.23 79.44 174.33 162.07

MAPE 28.63 25.81 55.08 51.37

MSE 10,370.37 8735.04 37,750.02 32,975.05
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we use the established Matlab procedure to run and for

existing models, and we use the results about MAPE,

MASE and E(SMAPE) present in Robs blog (https://robj

hyndman.com/hyndsight/show-me-the-evidence). This

comparison is shown in Table 6.

Table 6 shows that the proposed model is advantageous

than compared existing models. With the large numbers of

the considered time series and the different features of the

M3-competition data set, this comparison is very mean-

ingful to evaluate the advantages of the proposed model.

4 A Real Application in Vietnam

Mekong delta in Vietnam is strongly influenced by the Tien

River. This river has brought the fertility of the soil, the

abundance of fresh water and fisheries for this land.

However, the complicated hydrological regime, especially

floods, causes much damage to the resident every year.

Flood forecasting for this river is an important issue of the

region. In this section, we use the proposed model to

forecast the flood peak at the main station located on Tien

River.

In this application, based on the data presented in

Table 7, we also consider two cases:

(i) Case 1: Evaluating the Model Divide the data into

two parts: 80% for the training set (22 years) and

Table 10 Interpolating for all

flood peak data
Year Actual NFTS Error (%) Year Actual NFTS Error (%)

1990 418 413.68 1.03 2004 440 438.06 0.44

1991 463 463.00 0.00 2005 436 434.78 0.28

1992 343 343.34 0.10 2006 417 412.81 1.00

1993 344 343.34 0.19 2007 408 412.04 0.99

1994 453 453.01 0.01 2008 377 377.26 0.07

1995 430 433.84 0.89 2009 412 412.02 0.01

1996 486 482.80 0.66 2010 320 316.74 1.02

1997 418 413.68 1.03 2011 486 482.79 0.66

1998 281 281.00 0.00 2012 432 434.53 0.59

1999 420 416.42 0.85 2013 435 434.63 0.08

2000 506 506.00 0.00 2014 396 396.42 0.11

2001 479 480.44 0.30 2015 251 251.00 0.00

2002 482 483.01 0.21 2016 307 313.69 2.18

2003 406 411.26 1.30 2017 343 343.34 0.10

MAE ¼ 2.02; MAPE ¼ 0.50; MSE ¼ 7.78

Table 11 The forecasted flood peak through the year 2025

Year ARIMAP Year ARIMAP

2018 403.88 2022 406.01

2019 407.70 2023 406.46

2020 405.47 2024 406.19

2021 406.77 2025 406.35

1990 1995 2000 2005 2010 2015 2020 2025
Year

250

300

350

400

450

500

550

Cm

Actual Value
Forecasted Value

Fig. 5 Graph for actual and forecast flood peak
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20% for the test set (6 years). Interpolate the

training set by the proposed model and forecast for

years of the test set by ARIMA and AM models

and compare those with original data by the MAE,

MAPE and MSE parameters. The results of per-

forming are summarized in Table 8. Table 8 shows

that the errors between the actual and the interpo-

lated flood peak in training set are very low

(0.00–3.86%) and the MAE, MAPE, and MSE

parameters are small. Using this fuzzy data and

original data to forecast by ARIMA and AM

models for years of test set, we obtain Table 9. For

test data, Table 9 also shows that the parameters

MAE, MAPE and MSE of the proposed model are

smallest.

(ii) Case 2: Forecasting for Future Interpolating all

data by the proposed model, we have Table 10.

Using the data from Table 10, forecasting for the

next several years by ARIMA and AM methods,

we obtain Table 11.

The results of interpolating and forecasting for the

flood peak are shown in Fig. 5.

It is seen that the forecasted and the actual data are

almost identical. In the future, the flood peak of the Tien

River is slow.

5 Conclusion

This study has set up a new fuzzy time series model. This

model is based on the two important algorithms: deter-

mining the suitable number of clusters for universe set and

finding the fuzzy relationships between an element with

clusters in series. These improvements make the proposed

model more advantages than the existing models. The

numerical examples from different data sets with various

scales and characteristics show this problem. The proposed

model is solved effectively by the established Matlab

procedure. The practical application shows the logicality

and potential to many different applications. Our further

studies will focus on forecasting of many problems in

reality.
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